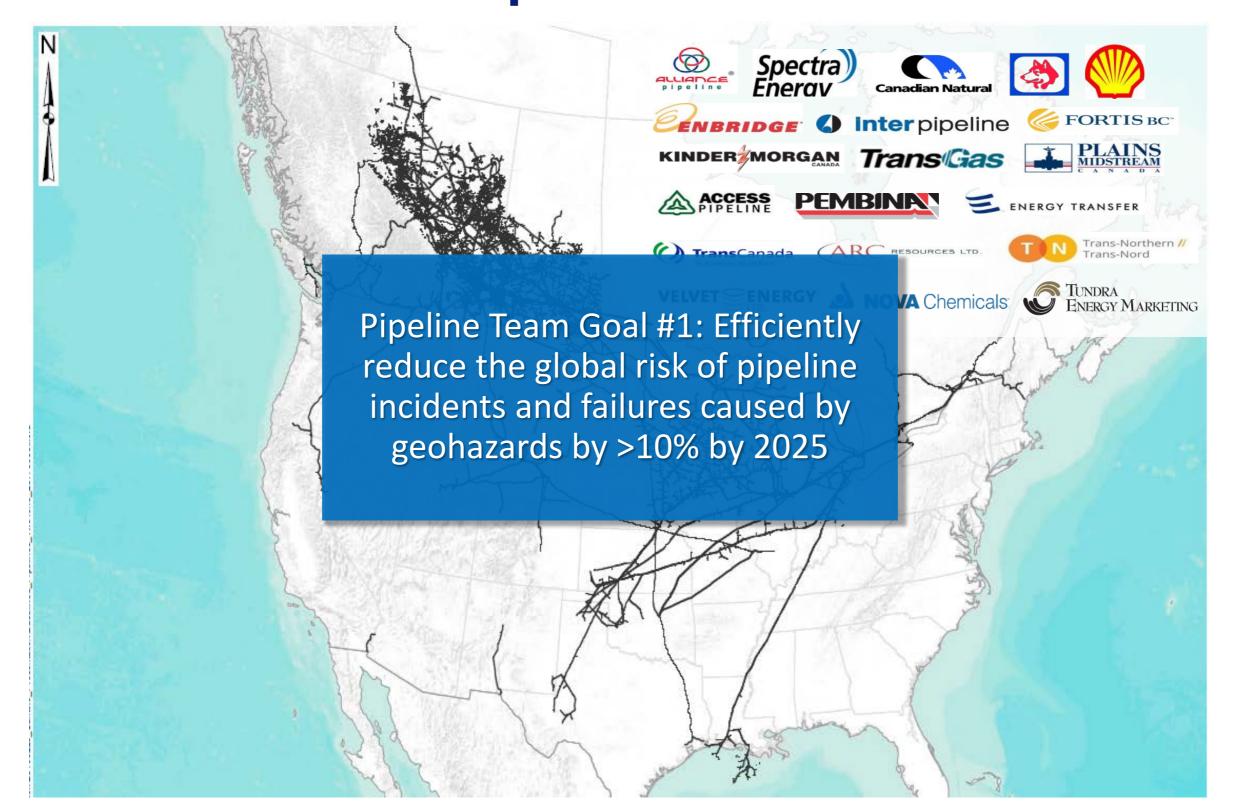
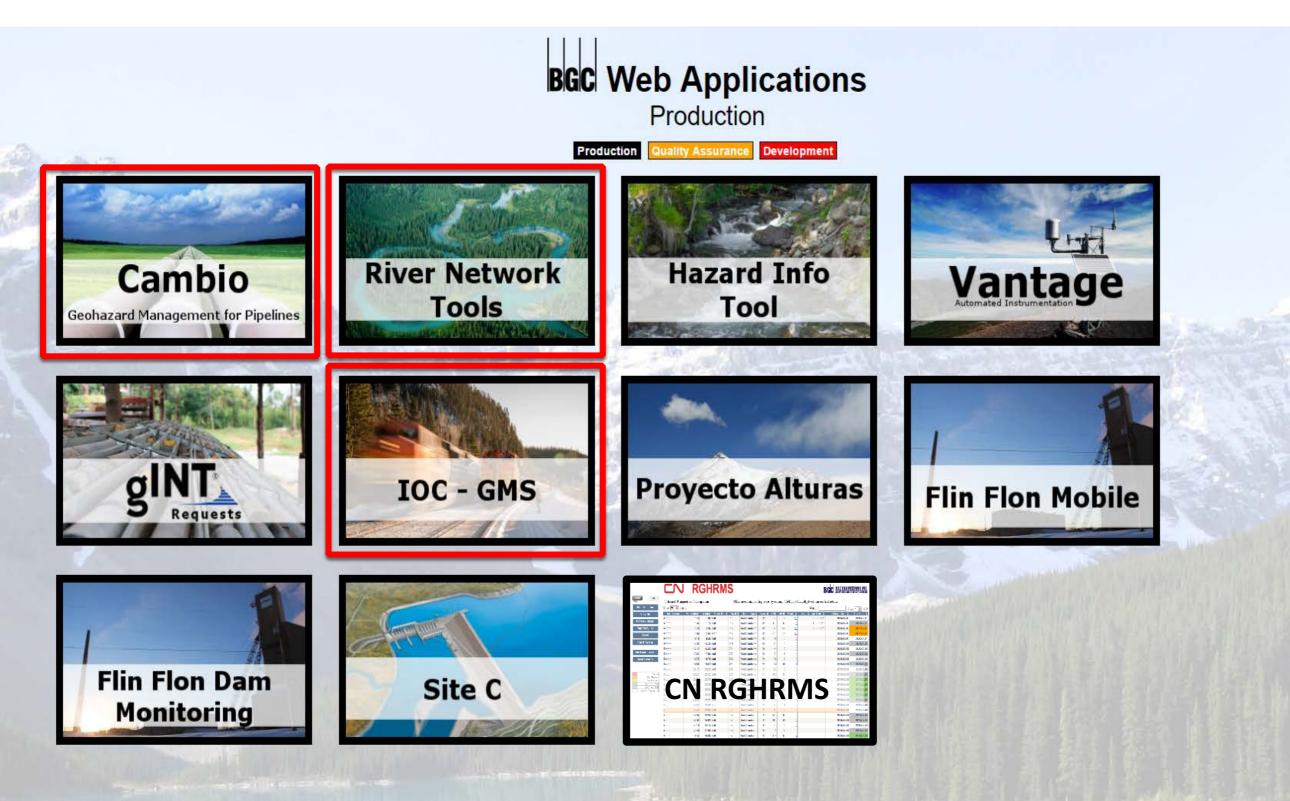

Geohazard risk assessment and asset management along railway corridors

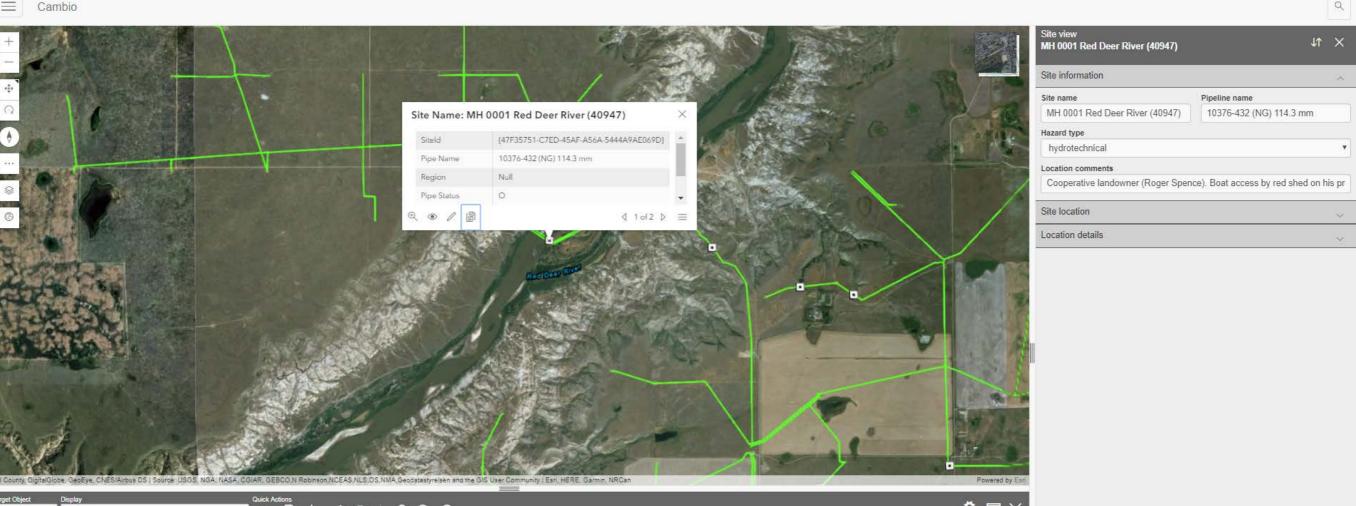
BGC: Matt Lato, Pete Quinn, Mark Pritchard, Mike Porter and Sarah Newton IOC: Dominique Sirois

BGC supports risk-based geohazard management for linear and distributed infrastructure, including: pipelines, highways, railways, communities and mines.





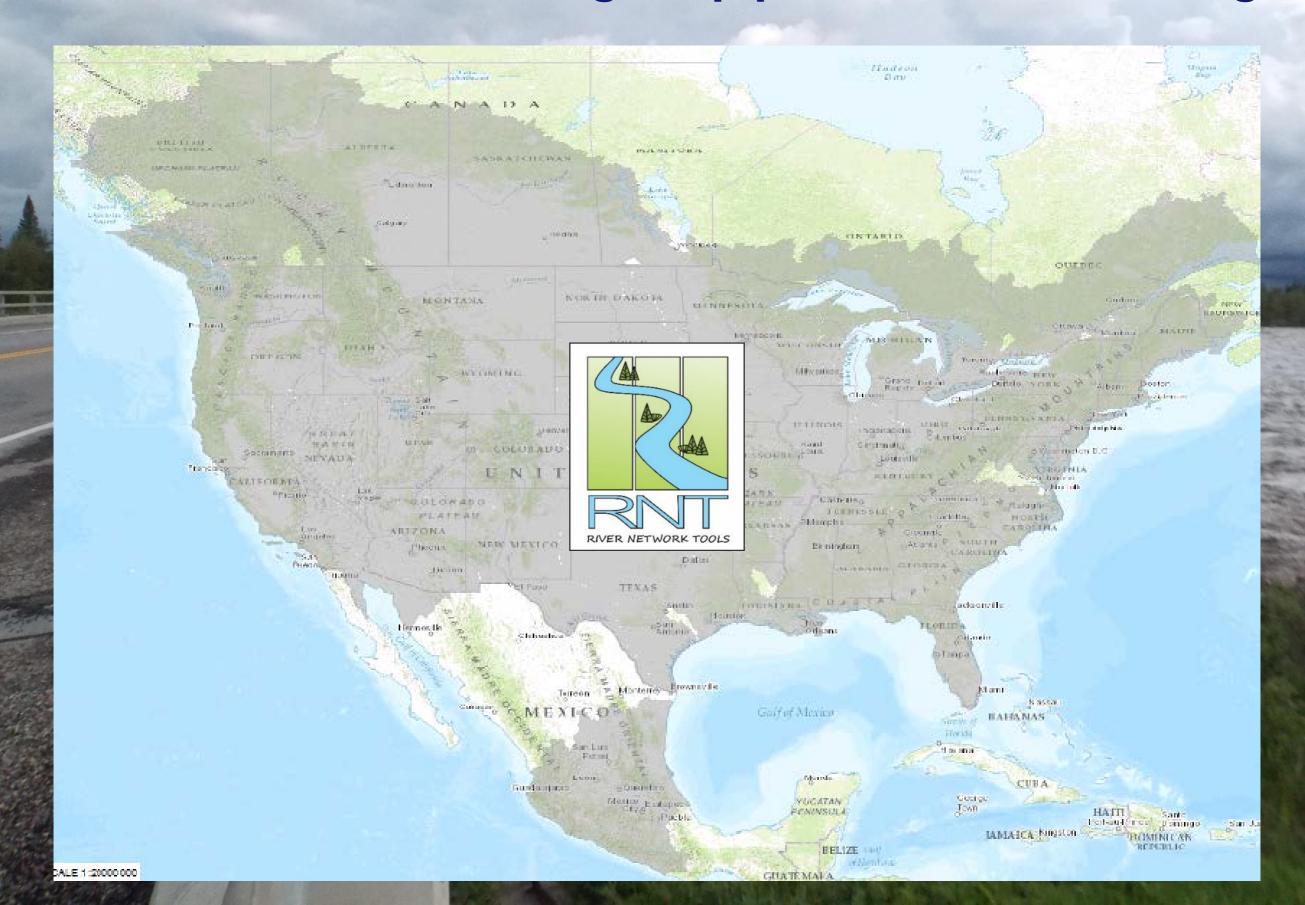
Cambio_{Pipeline} contains >135,000 documented geohazards along 300,000 km of pipeline for 18 operators.



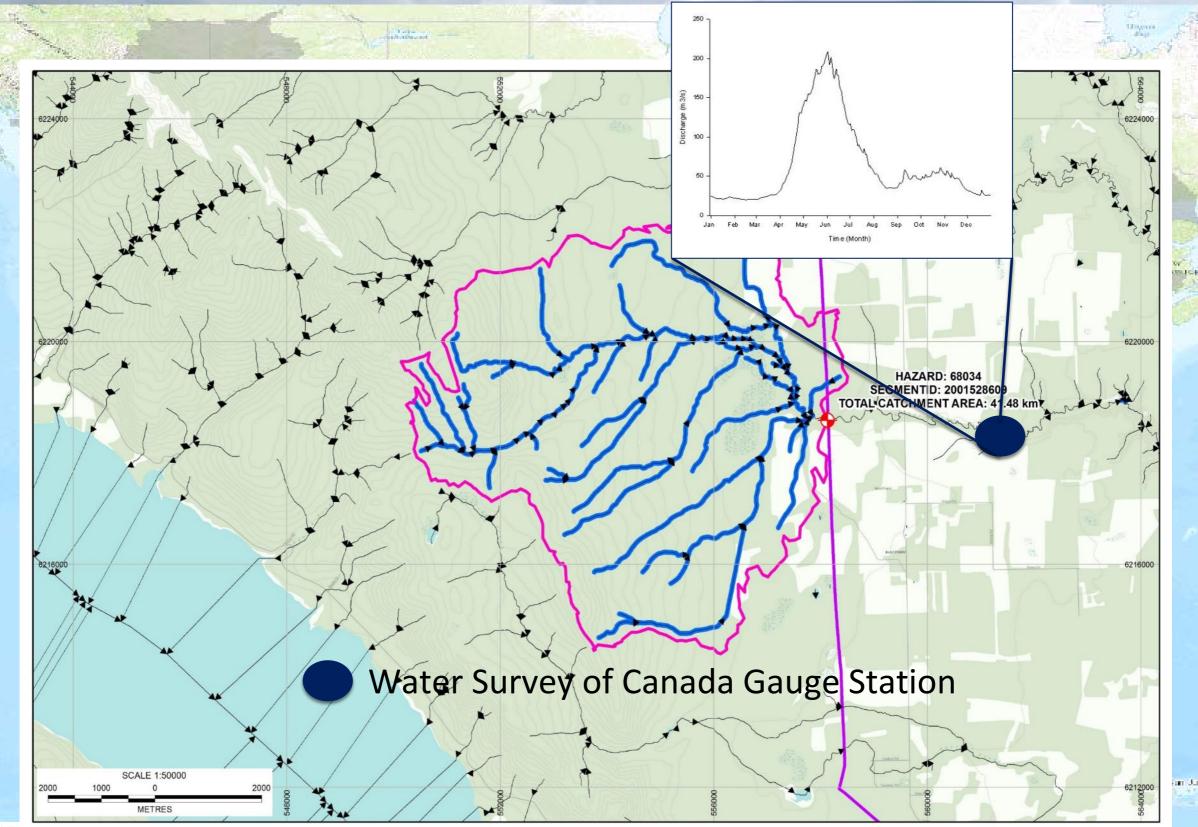
BGC's geohazard management platforms

Copyright © 2017 BGC Engineering. All rights reserved.

Cambio_{Pipelines} combines real-time monitoring, inspection and historical data with risk-based algorithms to help operators make decisions to prevent failures and reduce consequences.



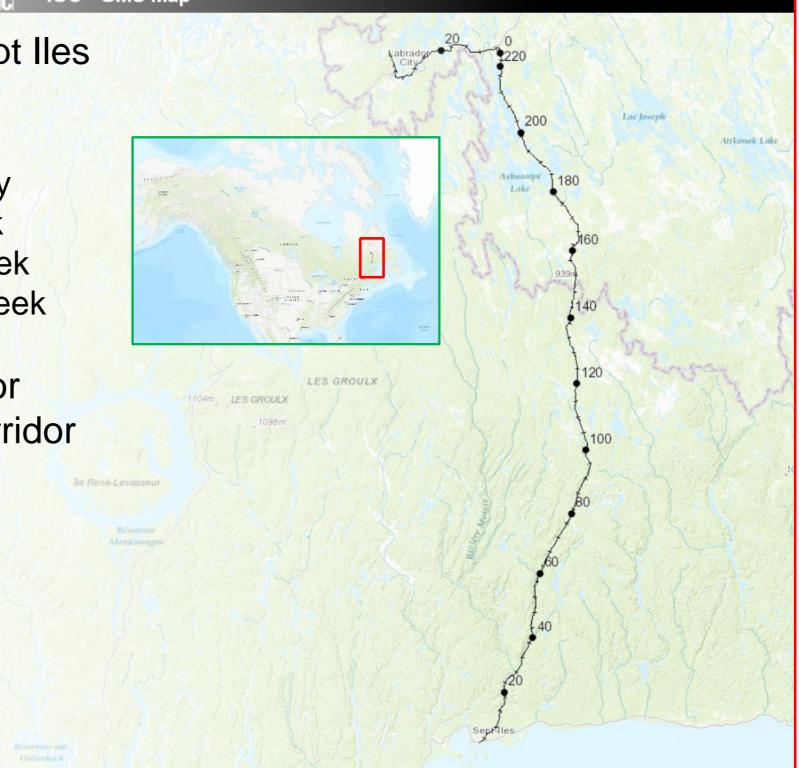
Target Object Sites 🔹	Display High Priority Site	s • • • • • • • • • • • • • • • • • • •	> Q @	🤹 🗆 🗙
SiteId		追 Site Name	11 Pipe Name	
2603		SHW Stream (2603)	14265-004 (NG) 114.3 mm	*
2604		SHW Waskahigan River (2604)	14265-004 (NG) 114.3 mm	
2607		SHW Stream (2607)	14265-008 (NG) 114.3 mm	
2611		SHW Stream (2611)	14265-008 (NG) 114.3 mm	
2612		SHW Stream (2612)	14265-008 (NG) 114.3 mm	
2613		SHW Little Smoky River (2613)	14265-008 (NG) 114.3 mm	-



The RNT is used to automate FFA calculation and support real-time flood monitoring for pipeline water crossings.

The RNT is used to automate FFA calculation and support real-time flood monitoring for pipeline water crossings.

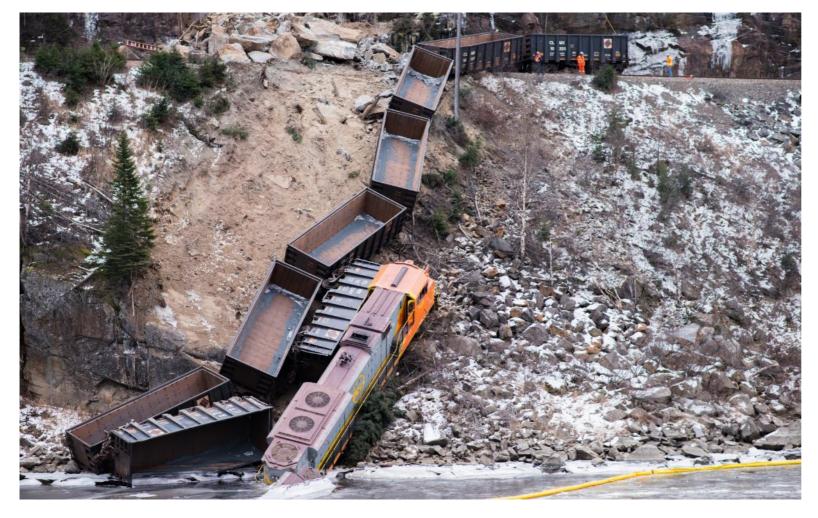
The RNT is used to automate FFA calculation and support real-time flood monitoring for pipeline water crossings.


The QNS&L railway line

IOC - GMS Map

 420 km of track between Sept lles and Labrador City

IC RioTinto

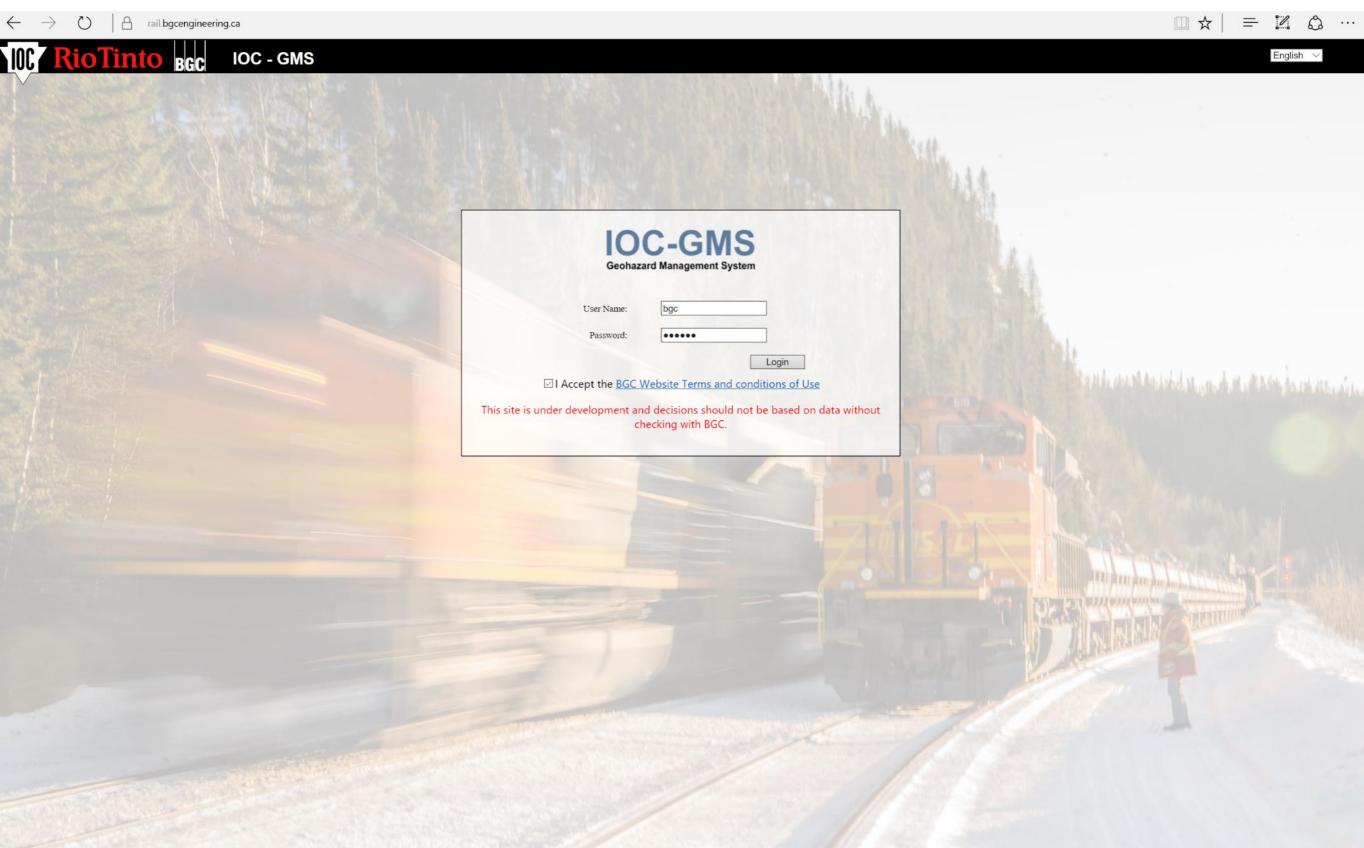

- Daily traffic
 - Ten to fifteen ore trains a day
 - Two fuel unit-trains per week
 - Multiple freight trains per week
 - Four passenger trains per week
 - Work trains
- Fibre-optic communication for Labrador City follows the corridor

Origins of Cambio_{Rail}

(IOC Geohazard Management System)

- At approximately 05:30 on November 6, 2014 a northbound (empty) ore train derailed into the Moisie River
 - One locomotive was completely submerged
 - One locomotive derailed onto the embankment
 - Nine empty ore cars derailed onto the embankment

Geohazard risk management framework


essment	Asses	sment	Туре	1		1.	 Scope Definition a. Recognize the potential hazard b. Define the study area and level of effort c. Define roles of the client, regulator, stakeholders, and Qualified Registered Professional (QRP) 	
Geohazard Assessment	Geohazard Risk Identification	ik Analysis	nent		process	2.	 Identify 'key' consequences to be considered for risk estimation Geohazard Analysis Identify the geohazard process, characterize the geohazard in terms of factors such as mechanism, causal factors, and trigger factors; estimate frequency and magnitude; develop geohazard scenarios; and estimate extent and intensity of geohazard scenarios. 	Ongoing
	Geohaz	Geohazard Risk Analysis	Geohazard Risk Assessment	ement	d Consultation isk management	3.	 Elements at Risk Analysis a. Identify elements at risk b. Characterize elements at risk with parameters that can be used to estimate vulnerability to geohazard impact. 	Monitoring a Ongoing review of risk scenarios
			Geoha	Geoazard Risk Management	Communication and C eholders about the risk	4.	Geohazard Risk Estimationa.Develop geohazard risk scenariosb.Determine geohazard risk parametersc.Estimate geohazard risk	nd R and
			1	Geoa	Risk Commur Informing stakeholders	5.	Geohazard Risk Evaluationa.Compare the estimated risk against tolerance criteriab.Prioritize risks for risk control and monitoring	leview risk management pro
					Info	6.	 Geohazard Risk Control a. Identify options to reduce risks to levels considered tolerable by the client or governing jurisdiction b. Select option(s) with the greatest risk reduction at least cost c. Estimate residual risk for preferred option(s) 	ocess
						7.	Action a. Implement chosen risk control options b. Define and document ongoing monitoring and maintenance requirements	

Key assumptions

- Geohazards conform to a frequency-magnitude relationship, where larger events occur more rarely.
- Large events may be lower risk than a small event if the likelihood of unwanted outcome is sufficiently lower.
- Mitigation priorities depend on risk tolerance for specific consequences, not only event magnitude or frequency

(IOC Geohazard Management System)

Cambio_{Rail}: dashboard

Gagon Sud WAC 15.5 44 11.9 12.9 0 Level 1: 1h < 7 mm	Current Weat	her Conditio	ons							
Gagnon Sud WAC 15.5 44 11.9 12.9 0 Level 1: 1h < 7 mm	Location	MilePoint	Elevation (m)							Reading
Tika Nord WAC 57.8 109 11.7 14 0.3 Level 1: 1h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Premio Sud WAC 78.9 472 8.1 10.2 1.8 Level 1: 1h < 7 mm	Gagnon Sud	WAC 15.5	44							2017-0
Premio Sud WAC 78.9 472 8.1 10.2 1.8 Level 1: 1h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Waco Sud WAC 100.4 580 7.3 10.7 1.8 Level 1: 1h < 7 mm	Nicman Nord	WAC 36.2	62	11.4	12	2.4	Level 1: 1 h < 7 mm	Level 1	Level 1: 0.5 h < 9.2 mm	2017-0
Waco Sud WAC 100.4 580 7.3 10.7 1.8 Level 1: 1 h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Mai Terminal WAC 128.1 606 6.8 9.7 0 Level 1: 1 h < 7 mm	Tika Nord	WAC 57.8	109	11.7	14	0.3	Level 1: 1 h < 7 mm	Level 1	Level 1: 0.5 h < 9.2 mm	2017-0
Mai Terminal WAC 128.1 606 6.8 9.7 0 Level 1: 1h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Oreway Camp WAC 186.6 534 5.5 null 3.5 Level 1: 1h < 7 mm	Premio Sud	WAC 78.9	472	8.1	10.2	1.8	Level 1: 1 h < 7 mm	Level 1	Level 1: 0.5 h < 9.2 mm	2017-0
Oreway Camp WAC 186.6 534 5.5 null 3.5 Level 1: 1 h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Menistouc Ouest NL 11.2 549 4.4 14.2 7.4 Level 1: 1 h < 7 mm	Waco Sud	WAC 100.4	580	7.3	10.7	1.8	Level 1: 1 h < 7 mm	Level 1	Level 1: 0.5 h < 9.2 mm	2017-09
Menistouc Ouest NL 11.2 549 4.4 14.2 7.4 Level 1: 1h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Current Stream Flow Conditions MilePoint Elevation (m) Discharge (m³/s) Bank Erosion TARP * Reading T Moisie River WAC 14.9 20 435.7 Level 1 2017-09-2	Mai Terminal	WAC 128.1	606	6.8	9.7	0	Level 1: 1 h < 7 mm	Level 1	Level 1: 0.5 h < 9.2 mm	2017-0
Menistouc Quest NL 11.2 549 4.4 14.2 7.4 Level 1: 1 h < 7 mm Level 1 Level 1: 0.5 h < 9.2 mm Current Stream Flow Conditions MilePoint Elevation (m) Discharge (m³/s) Bank Erosion TARP * Reading T Moisie River WAC 14.9 20 435.7 Level 1 2017-09-2	Oreway Camp	WAC 186.6	534	5.5	null	3.5	Level 1: 1 h < 7 mm	Level 1	Level 1: 0.5 h < 9.2 mm	2017-0
Current Stream Flow Conditions Location MilePoint Elevation (m) Discharge (m³/s) Bank Erosion TARP * Reading T Moisie River WAC 14.9 20 435.7 Level 1 2017-09-2			549		14.2	7.4	Level 1: 1 h < 7 mm			2017-0
	Location	Mi	lePoint	Elevation	(m)	Dischar	ge (m ³ /s)			ding Time (E
	ER STANDU IX MARKER				-		35.7	Level 1	201	7-09-25 16:00

Cambio_{Rail}: tabular database

10C

Soarch:

≡-

OTINTO BGC IOC - GMS

Click Record to View: \bigcirc Hazard \odot Inspection \bigcirc Completion

											Search:	
tions	Subdivision 🔺	From Mile 🌲	To Mile 🌲	Track Side 🛛 🌲	HazID≑	Scenario Type	Photos	Haz Rating 🍦	Consequence Rating 🛛 🍦	Risk Rating 🌲	Last Insp. Date	Due Date
1	Wacouna	10.04	10.06	Right Side	563	Earth and Debris Landslide	<u>9</u>	Moderate	Moderate	Level 3	16 Jun 2016	16 Jun 2021
ection	Wacouna	10.15	10.15	Left Side	832	Washout	<u>9</u>	Low	Moderate	Level 2	16 Jun 2016	16 Jun 202
	Wacouna	10.19	10.29	Both Sides	564	Earth and Debris Landslide	4	Non-Credible	Unknown	Unknown	18 Aug 2015	
-\ii \	Wacouna	10.45	10.45	Right Side	844	Washout	<u>8</u>	Low	Moderate	Level 2	16 Jun 2016	16 Jun 202
	Wacouna	10.60	10.60	Both Sides	797	Washout	<u>9</u>	High	Moderate	Level 4	16 Jun 2016	16 Jun 201
azard	Wacouna	10.74	10.74	Left Side	847	Washout	<u>14</u>	High	High	Level 5	16 Jun 2016	16 Jun 201
Excel	Wacouna	10.85	10.92	Left Side	566	Earth and Debris Landslide	5	Low	Moderate	Level 2	16 Jun 2016	16 Jun 202
Y	Wacouna	10.94	10.94	Left Side	833	Washout	0	Non-Credible	Moderate	Non-Credible	18 Aug 2015	18 Aug 202
1	Wacouna	10.95	11.00	Right Side	500	Earth and Debris Landslide	2	Non-Credible	Unknown	Unknown	18 Aug 2015	
Y	Wacouna	100.17	100.20	Right Side	582	Earth and Debris Landslide	<u>6</u>	Low	High	Level 3	27 Aug 2015	27 Aug 202
1	Wacouna	100.54	100.54	Right Side	804	Washout	1	Low	Very High	Level 4	27 Aug 2015	27 Aug 201
١	Wacouna	101.45	101.45	Right Side	896	Washout	4	Non-Credible	Very High	Non-Credible	27 Aug 2015	27 Aug 202
	Wacouna	101.75	101.75	Right Side	781	Washout	4	Low	High	Level 3	27 Aug 2015	27 Aug 202
d \	Wacouna	102.11	102.11	Right Side	861	Washout	2	Low	Very High	Level 4	27 Aug 2015	27 Aug 201
1	Wacouna	103.48	103.50	Right Side	583	Earth and Debris Landslide	4	Non-Credible	Unknown	Unknown	27 Aug 2015	
Overdue Due This Year	Wacouna	103.53	103.56	Right Side	584	Earth and Debris Landslide	5	Non-Credible	Unknown	Unknown	27 Aug 2015	
ue Next Year	Wacouna	103.94	104.00	Right Side	585	Earth and Debris Landslide	<u>6</u>	Low	Very High	Level 4	27 Aug 2015	27 Aug 201
in 2-3 Years	Wacouna	106.33	106.39	Left Side	586	Earth and Debris Landslide	<u>7</u>	Non-Credible	Unknown	Unknown	27 Aug 2015	
	Wacouna	11.06	11.06	Left Side	871	Washout	5	Moderate	High	Level 4	16 Jun 2016	16 Jun 201
1	Wacouna	11.10	11.15	Right Side	570	Earth and Debris Landslide	2	Non-Credible	Unknown	Unknown	18 Aug 2015	
١	Wacouna	11.22	11.24	Right Side	565	Earth and Debris Landslide	<u>10</u>	High	High	Level 5	16 Jun 2016	16 Jun 201
١	Wacouna	11.23	11.25	Right Side	1	Rock Fall	4	Moderate	Very High	Level 5	16 Jun 2016	16 Jun 201
٢	Wacouna	11.23	11.25	Left Side	2	Rock Fall	<u>6</u>	Moderate	Very High	Level 5	16 Jun 2016	16 Jun 201
١	Wacouna	11.25	11.63	Unlined Tunnel	3	Rock Fall	28	Very High	High	Level 6	18 May 2017	18 May 201
٢	Wacouna	11.63	11.64	Right Side	4	Rock Fall	5	High	High	Level 5	18 May 2017	18 May 202
1	Wacouna	11.63	11.64	Left Side	5	Rock Fall	2	Moderate	High	Level 4	18 May 2017	18 May 202
1	Wacouna	11.65	11.66	Right Side	2277	Below Track Rock Fall	35	Moderate	High	Level 4	26 Oct 2016	26 Oct 201
1	Wacouna	11.66	11.68	Both Sides	1076	Below Track Rock Fall	18	High	High	Level 5	18 Jun 2016	18 Jun 201
١	Wacouna	11.86	12.04	Right Side	965	Earth and Debris Landslide	4	Low	High	Level 3	18 Jun 2016	18 Jun 202
1	Wacouna	11.90	11.92	Right Side	567	Earth and Debris Landslide	6	Non-Credible	Unknown	Unknown	18 Aug 2015	
S	Showing 1 to 30 d	of 724 entries			II					Show	30 v entries	Page

Shift-click Header to order by multiple columns

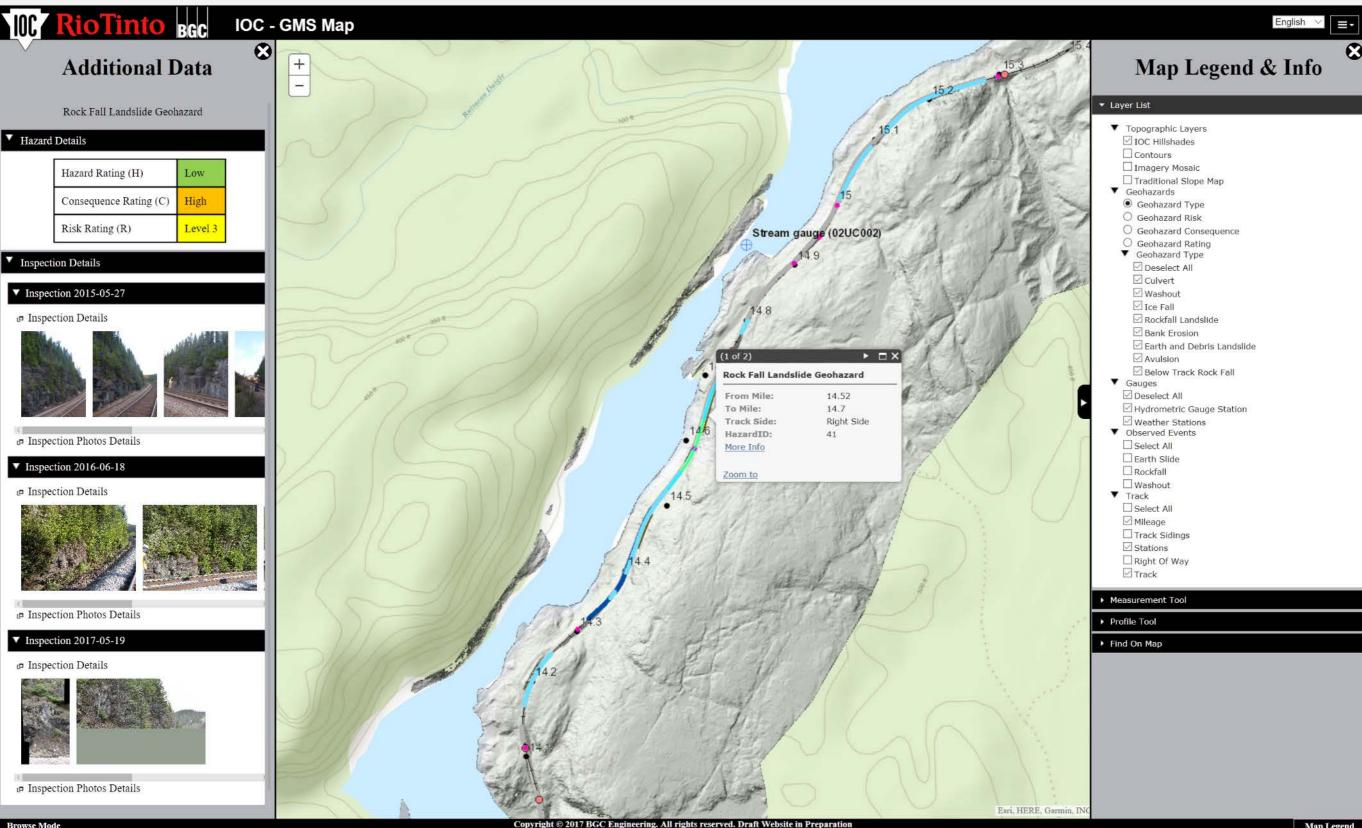
Sortable and searchable table with filters for documented geohazards

- Links to photos, rating and inspection history, and planned mitigation
- Automatic assignment date of next inspection based on risk level
- Exportable data and reports

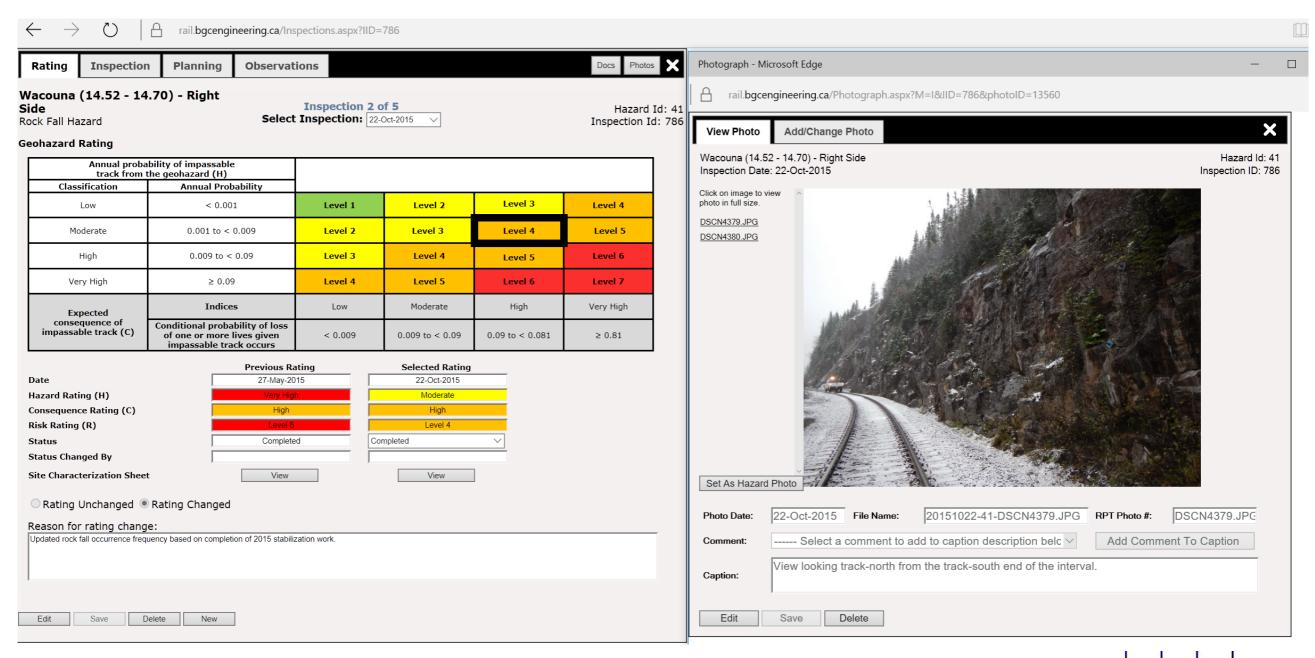
Selection Criteria:

ullet

Cambio_{Rail}: **documentation forms**


RioT	IUC E	haracte	IS Id Debris Landsli erization Form	ide Site	Risk Matr	BGC ENGINEERING INC AN APPLIED EARTH SCIENCES COMPAN	9. W				
Tinto	Date: 16-Jun-20 Subdivision: Wa Mileage: 10.04 - Track side: Righ	icouna 10.06	spector: Marc-Andre Brid	deau	Annual Prob Impassable P _{gh} : Likely		Risk (expected loss) R: Level 3				
Sic Em	ppe Type: abankment or Slope A	-	Was	-GMS shout Site Char	racterizat			EERING INC. Sciences company			
Ra (be Wa	hbankment or Slope H il to Embankment Cre elow track hazard): arning time: Hours		Location Informa Date: 18-May-2017 Subdivision: Wacour Mileage: 9.78 - 9.78	Inspector: Rebeco	ca Lee	Risk Matrix (fie Annual Probability o Impassable Track P _{gh} : Very Unlikely					
Ne me	pographical setting: otes we material was etres worth of m alue increased f	a Siop	Track side: Right Sid pe Protection: sion at the Shoulders:	<u>ē</u> 🖤		rosion Site Charact		n	NEERING INC. Th sciences company		
Req		Eros Evid	sion at the Shoulders. sion of the Top of the Er dence of Embankment S annel Obstructions:	m Jate: 22-A Subdivision	Informatio Aug-2015 n: Wacouna 57.14 - 57.23	n Inspector: Melissa Hairabedia			Risk (expected loss) R: Level 5		
Inf	ormation/experience	Sed Emb	nded Water Upstream of liments Retained Upstrea bankment material: vert Cross-sectional area	f C Track side: Minimum Perper	Left Sid	IOC-G Rock S		aracterization Form		BGC BGC	ENGINEERING INC. Ied earth sciences company
		Mar Top No	rning time: A few month pographical setting: >25 Ites is site (IOC-GMS H	k Evidence of Eros Regional Channe Left bank Vegeta	sion at the el Pattern ation: etation: Right Bar	Subdivision: Wacouna Mileage: 12.20 - 12.27	Inspector: Marc-An		Risk Matrix (fieldAnnual Probability ofImpassable TrackPgh: UnlikelyLit: VariableH: High	estimate) Consequence, given Impassable Track L _d : Likely V: Very Likely C: High	Risk (expected loss) R: Level 5
				Right Bank Toe Left Bank Toe Pr Right Bank Slop	Protectio rotection:	Slope Attributes: Estimated Measured (*Pierson et. al 2001, Rockfall catchment area design guide)	Slope Height (m): Slope Angle (°): Ditch width / dep Ditch effectivenes	90 th (m): 2.7	Source Zone: Volume class breakdown (%):	V_1 (< 1 m ³): 0.35 V_2 (1 to 3 m ³): 0.25 V_3 (> 3 m ³): 0.4	
	_			Left Bank Slope Warning time: Topographical se	Protectic A few wee etting: W	Rockfall Frequency Monthly Yearly 1/10 years > 1/10 years	1. Rock 2. Prese 3. Impa	fall currently detaching from the nce of detachment scars on the ct marks in the track ballast, ties, nce of rock fall debris	slope, tension cracks slope	Uphill ofAt gradeDownhil	
	bg	cer	ngineer	ing.con	ed Info	Effectiveness of Slope M	5. Dama 6. Mitig 7. Inforr	aged vegetation above or adjacer ative structure such as mesh nets mation/experience from track per spect to rock fall reaching	nt to track s, lockblock walls, etc. rsonnel and train operators	Slope N	Maintenance: Scaling Bolts Image: Mesh

Cambio_{Rail}: spatial access to information


arail.bgcengineering.ca/Map.aspx

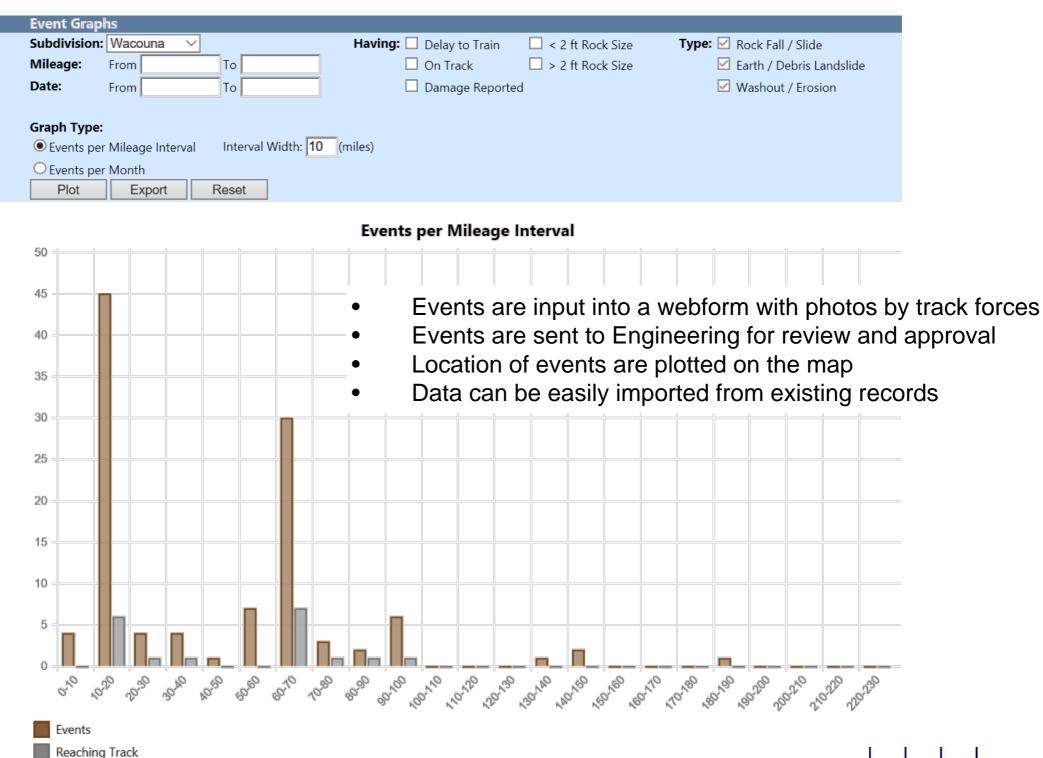
 \leftarrow

1 0 ...

Cambio_{Rail}: individual site risk estimation

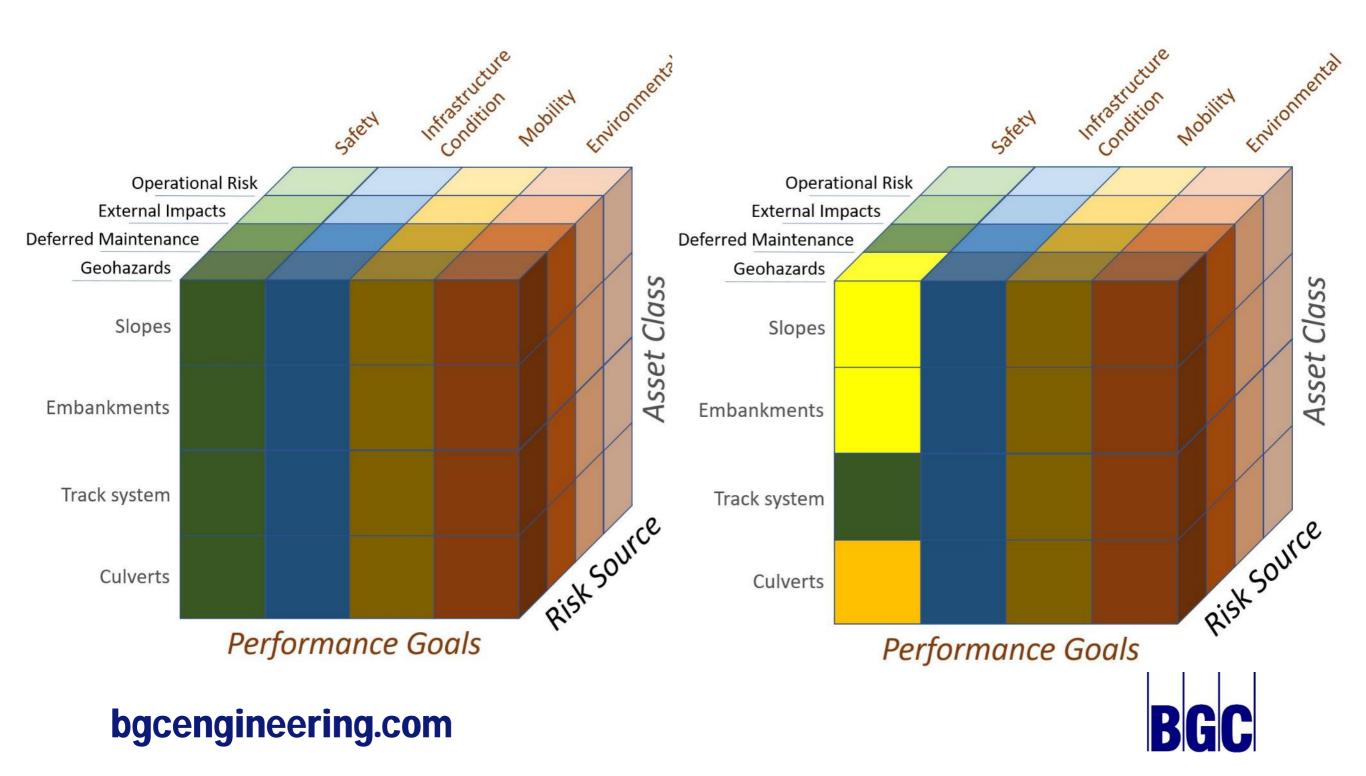


Cambio_{Rail}: TARP warning systems


Respons	beyond that explicitly described in the Weather	Geohazard	Operational	Management
Level	Characteristics	Activity	Response	Response
1	Rainfall below Threshold 1-2 1-hr 7 mm 24-hr 19 mm 2-hr 9 mm 48-hr 23 mm 6-hr 12 mm 72-hr 25 mm 12-hr 15 mm 96-hr 27 mm	Shallow landslides very unlikely	TBD by IOC	TBD by IOC
2	Rainfall below Threshold 2-3 1-hr 17 mm 24-hr 44 mm 2-hr 21 mm 48-hr 54 mm 6-hr 29 mm 72-hr 61 mm 12-hr 36 mm 96-hr 67 mm	Sporadic shallow landslides unlikely	TBD by IOC	TBD by IOC
3	Rainfall below Threshold 3-4 1-hr 27 mm 2-hr 33 mm 48-hr 86 mm 6-hr 46 mm 12-hr 57 mm 96-hr 106mm	Sporadic shallow landslides possible	TBD by IOC	TBD by IOC
4	Rainfall above Threshold 3-4 1-hr > 27 mm 24-hr > 70 mm 2-hr > 33 mm 48-hr > 86 mm 6-hr > 46 mm 72-hr > 97 mm 12-hr > 57 mm 96-hr > 106mm	Abundant shallow landslides likely	TBD by IOC	TBD by IOC

Cambio_{Rail}: geohazard event database

BGC


Cambio_{Rail} strengths

- All geohazards and risk scenarios are assessed using a consistent framework to allow direct comparison between different asset and hazard types
- The IOC-GMS is used by maintenance workers, engineers, planners, and executives
- Information is easily accessible with minimal learning required
- Risk levels reflect corporate standards
- Real-time warning based on live weather data along the railway
- Ability to measure risk reduction versus dollar invested

Cambio_{Rail} outlook

- Expanding the capabilities to include culvert rating and management
- Integrating performance objectives and maintenance scheduling
- Working with Rio Tinto Iron Ore in Australia to implement Cambio_{Rail} for a 1,600 km rail network that connections 16 mines and two port facilities

Cambio_{Rail} outlook: beyond geohazards

